复数的虚部为( )
A.2 B.1 C.-1 D.-i
设函数.
(1)当时,求函数的定义域;
(2)当时,证明:.
在极坐标系中,已知曲线:,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线,又已知直线:(是参数),且直线与曲线交于两点.
(1)求曲线的直角坐标方程,并说明它是什么曲线;
(2)设定点,求.
如图所示,已知⊙与⊙相交于,两点,过点作⊙的切线交⊙于点,过点作两圆的割线,分别交⊙,⊙于点,与相交于点.
(1)求证:;
(2)若是⊙的切线,且,,,求的长.
设函数,,且存在两个极值点、,其中.
(1)求实数的取值范围;
(2)求的最小值;
(3)证明不等式:.
已知椭圆:是离心率为,顶点,,中心到直线的距离为.
(1)求椭圆方程;
(2)设椭圆上一动点满足:,其中是椭圆上的点,直线与的斜率之积为,若为一动点,,为两定点,求的值.