已知函数.
(1)当时,求不等式的解集;
(2)若函数的最小值为5,求的值.
在平面直角坐标系中,已知直线的参数方程为(为参数,),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线相交于两点,求的值.
如图,在直角中,,为边上异于的一点,以为直径作圆,并分别交于点.
(1)证明:四点共圆;
(2)若为的中点,且,,求的长.
已知函数,是常数,且.
(1)讨论零点的个数;
(2)证明:.
已知椭圆的两个焦点,且椭圆过点,且是椭圆上位于第一象限的点,且的面积.
(1)求点的坐标;
(2)过点的直线与椭圆相交与点,直线与轴相交与两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.
如图,在直三棱柱中,,,,是线段上一点.
(1)设,求异面直线与所成角的余弦值;
(2)若平面,求二面角的正切值.