选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为.
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
选修4-1:几何证明选讲
如图,已知⊙和⊙相交于两点,为⊙的直径,直线交⊙于点,点为弧中点,连结分别交⊙、于点,连结.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;
(Ⅱ)若对都有成立,试求实数的取值范围;
(Ⅲ)记,当时,函数在区间上有两个零点,求实数的取值范围.
已知椭圆的中心在原点,焦点在坐标轴上,且经过与两点.
(Ⅰ)求的方程;
(Ⅱ)设直线与交于两点,且以为对角线的菱形的一顶点为,求面积的最大值及此时直线的方程.
某公司通过初试和复试两轮考试确定最终合格人选,当第一轮初试合格后方可进入第二轮复试,两次考核过程相互独立.根据甲、乙、丙三人现有的水平,第一轮考核甲、乙、丙三人合格的概率分别为.第二轮考核,甲、乙、丙三人合格的概率分别为.
(Ⅰ)求第一轮考核后甲、乙两人中只有乙合格的概率;
(Ⅱ)设甲、乙、丙三人经过前后两轮考核后合格入选的人数为,求的分布列和数学期望.
如图,在各棱长均为的三棱柱中,侧面底面,且,点为的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.