选修4-1:几何证明选讲
如图,是的直径,弦延长线相交于点为延长线上一点,且,
求证:(1);(2).
已知函数(为常数,为自然对数的底数)是实数集上的奇函数,函数在区间上是减函数.
(1)求实数的值;
(2)若在上恒成立,求实数的取值范围;
(3)讨论关于的方程的根的个数.
已知椭圆的离心率为,分别为的上、下顶点且为外的动点,且到上点的最近距离为1.
(1)求椭圆的标准方程;
(2)当时,设直线分别与椭圆交于两点,若的面积是的面积的 倍,求的最大值.
在三棱柱中中,侧面为矩形,是的中点,与 交于点,且平面.
(1)证明:;
(2)若,求直线与平面所成角的正弦值.
为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是:65,68,72,79,81,88,92,95.物理成绩从小到大排序是:72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学成绩 | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
物理成绩 | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
若以数学成绩为解释变量,物理成绩为预报变量,求关于的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率(精确到0.01).
参考公式:相关系数
,
回归方程
,其中
参考数据:,
在中,的对边分别为,且.
(1)证明:;
(2)若,求的面积.