选修4-1:几何证明选讲
已知:如图,在中,,以为直径的交于点,过点作,垂足为,连结交于点.求证:
(Ⅰ)是的切线;
(Ⅱ).
已知函数,,其中.
(Ⅰ)求在处的切线方程;
(Ⅱ)当时,证明:.
已知抛物线的顶点在原点,焦点在轴正半轴上,抛物线上的点到其焦点的距离等于5.
(Ⅰ)求抛物线的方程;
(Ⅱ)如图,过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若,求三角形的面积.
如图,在四棱锥中,是等边三角形,侧面底面,其中,,,.
(Ⅰ)是上一点,求证:平面平面;
(Ⅱ)求三棱锥的体积.
假设某地有男驾驶员300名,女驾驶员200名.为了研究驾驶员日平均开车速度是否与性别有关,现采用分层抽样的方法,从中抽取了100名驾驶员,先统计了他们某月的日平均开车速度,然后按“男驾驶员”和“女驾驶员”分为两组,再将两组驾驶员的日平均开车速度(千米/小时)分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中日平均开车速度不足60(千米/小时)的驾驶员中随机抽取2人,求至少抽到一名“女驾驶员”的概率.
(Ⅱ)如果一般认为日平均开车速度不少于80(千米/小时)者为“危险驾驶”.请你根据已知条件完成2×2联表,并判断是否有90%的把握认为“危险驾驶与驾驶员性别组有关”?
附:
三角形中,已知,其中,角所对的边分别为.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.