如图,一个侧棱长为的直三棱柱容器中盛有液体(不计容器厚度).若液面恰好分别过棱中点.
(1)求证:平面平面;
(2)当底面水平放置时,求液面的高.
在一次文、理学习倾向的调研中,对高一年段1000名学生进行文综、理综各一次测试(满分均为300分).测试后,随机抽取若干名学生成绩,记理综成绩为,文综成绩为,为,将值分组统计制成下表:
分组 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120) | [120,140] |
频数 | 4 | 18 | 42 | 66 | 48 | 20 | 2 |
并将其中女生的值分布情况制成频率分布直方图(如图所示).
(1)若已知直方图中[60,80)频数为25,试分别估计全体学生中,的男、女生人数;
(2)记的平均数为,如果称为整体具有学科学习倾向,试估计高一年段女生的值(同一组中的数据用该组区间中点值作代表),并判断高一年段女生是否整体具有显著学科学习倾向.
已知数列中,,,且数列是公差为2的等差数列.
(1)求的通项公式;
(2)记数列的前项和为,求满足不等式的的最小值.
在等腰直角中,,,为边上两个动点,且满足,则的取值范围为 .
公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 .
从某班5位老师中随机选两位老师值班,有女老师被选中的概率为,则在这5位老师中,女老师有 人.