选修4-5:不等式选讲
已知函数.
(1)当时,解不等式;
(2)当时,若关于的不等式的解集为空集,求实数的取值范围.
选修4-4:坐标系与参数方程
平面直角坐标系中,曲线.直线经过点,且倾斜角为.以为极点,以轴正半轴为极轴,建立极坐系.
(1)写出曲线的极坐标方程与直线的参数方程;
(2)若直线与曲线相交于两点,且,求实数的值.
选修4-1:几何证明选讲
如图,已知圆是的外接圆,是边上的高,是圆的直径.
(1)证明:;
(2)过点作圆的切线交的延长线于点,若,求的长.
设函数.
(1)求函数的单调区间;
(2)设是否存在极值,若存在,请求出极值;若不存在,请说明理由;
(3)当时.证明:.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.
(1)若点是的中点,求证:平面;
(2)若点在线段上,且,当三棱锥的体积为时,求实数的值.