满分5 > 高中数学试题 >

圆过点,求 (1)周长最小的圆的方程; (2)圆心在直线上的圆的方程.

圆过点,求

(1)周长最小的圆的方程;

(2)圆心在直线上的圆的方程.

 

(1);(2). 【解析】 试题分析:(1)根据圆的几何性质知以线段为直径的圆即为所求周长最小的圆,求出以线段为直径的圆的方程即可;(2)求出线段中垂线与直线交点,可得所求圆的圆心为求出的长即为圆的半径长,由此即可得到圆心在直线上的圆的方程. 试题解析:(1)当为直径时,过、的圆的半径最小,从而周长最小,即中点为圆心,半径,则圆的方程为:; (2)解法1:的斜率为,则的垂直平分线的方程是 ,即, 由得,即圆心坐标是, , ∴圆的方程是, 考点:1、圆的的标准方程;2、圆的几何性质.  
复制答案
考点分析:
相关试题推荐

已知直线,圆,请判断直线与圆的位置关系,若相交,则求直线被圆所截的线段长.

 

查看答案

已知变量满足约束条件

(1)画出可行域(过程不要求);

(2)求可行域的面积.

 

查看答案

已知点在圆上,点在圆上,则的最小值是__________.

 

查看答案

已知命题对任意的,命题存在,若命题”是真命题,则实数的取值范围是__________.

 

查看答案

关于平面对称的点的坐标是_________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.