满分5 > 高中数学试题 >

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动...

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值.

 

(1)(2)(3) 【解析】 试题分析:(1)根据两圆相切得圆心距与半径之间关系:,消去半径得,符合椭圆定义,由定义可得轨迹方程(2)探究问题,实质是计算问题,即利用坐标求和的比值:根据直线方程与椭圆方程联立方程组,利用两点间距离公式及韦达定理、弦长公式可得和的表达式,两式相比即得比值(3)因为的面积的面积,所以,利用原点到直线距离得三角形的高,而底为弦长MN(2中已求),可得面积表达式,为一个分式函数,结合变量分离法(整体代换)、基本不等式求最值 试题解析:【解析】 (1)设圆心的坐标为,半径为, 由于动圆一圆相切,且与圆相内切,所以动圆与圆只能内切 ∴ ∴圆心的轨迹为以为焦点的椭圆,其中, ∴ 故圆心的轨迹. (2)设,直线,则直线, 由可得:,∴, ∴ 由可得:, ∴, ∴ . ∴ ∴和的比值为一个常数,这个常数为. (3)∵,∴的面积的面积,∴, ∵到直线的距离, ∴.1 令,则,, ∵(当且仅当,即,亦即时取等号) ∴当时,取最大值.1 考点:利用椭圆定义求轨迹方程,直线与椭圆位置关系 【思路点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.  
复制答案
考点分析:
相关试题推荐

首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.

(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

 

查看答案

等差数列中,,其前项和为,等比数列中各项均为正数,,且,数列的公比

(1)求数列的通项公式;

(2)证明:

 

查看答案

如图,在梯形中,,四边形为矩形,平面平面

(1)求证:平面

(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

 

查看答案

已知命题函数的定义域为,命题关于的方程的两个实根均大于3,若“”为真,“”为假,求实数的取值范围.

 

查看答案

,若,则的最大值为___________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.