满分5 > 高中数学试题 >

由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( ...

由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为  

A.1            B.            C.              D.3

 

C 【解析】 试题分析:因为切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为,那么切线长的最小值为,选C. 考点:直线与圆的位置关系的应用. 【思路点晴】本题考查的是直线与圆的位置关系中直线与圆相切时切线长最小问题,解决该试题的关键是分析出切线长的最小值是在当直线上的点与圆心距离最小时取得,先求出圆心到直线的距离为,又因为圆的半径为,那么切线长的最小值为由勾股定理可求得切线长为.  
复制答案
考点分析:
相关试题推荐

是两个非零的平面向量,下列说法正确的是  

,则有

若存在实数λ,使得=λ,则

,则存在实数λ,使得=λ.

A.①③      B.①④     C.②③      D.②④

 

查看答案

若变量满足约束条件,则的最大值和最小值分别为  

A.       B.       C.       D.

 

查看答案

如果函数满足:对于任意,都有恒成立,则的取值范围是(    )

A.     B.

C.     D.

 

查看答案

箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是(  

A.      B.      C.      D.

 

查看答案

已知向量满足,则等于(  

A.                       B.                    

C.                    D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.