选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程;
(2)曲线的极坐标方程为,求与的公共点的极坐标.
选修4-1:几何证明选讲
如图,为圆上一点,点在直线的延长线上,过点作圆的切线交的延长线于点,.
(1)证明:;
(2)若,求圆的半径.
以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.
(1)求该椭圆的标准方程;
(2)过点且轴不垂直的直线交椭圆于两点,求证直线与的交点在一条直线上.
已知函数,,且函数与的图象在处的切线相同.
(1)求的值;
(2)令,若函数存在3个零点,求实数的取值范围.
已知四棱锥中,底面为矩形,底面,,,为上一点,为的中点.
(1)在图中作出平面与的交点,并指出点所在位置(不要求给出理由);
(2)求平面将四棱锥分成上下两部分的体积比.
某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455,已知当年产量低于350时,单位售价为20元/,若当年产量不低于350而低于550时,单位售价为15元/,当年产量不低于550时,单位售价为10元/.
(1)求图中的值;
(2)试估计年销售额大于5000元小于6000元的概率?