已知椭圆:()的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、两点,坐标原点到直线的距离为,求△面积的最大值.
如图1在△中,,、分别为线段、的中点,,.以为折痕,将△折起到图2的位置,使平面⊥平面,连接,,设是线段上的动点,满足.
(1)证明:平面⊥平面;
(2)若二面角的大小为,求的值.
根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.
(1)已知、,三个年龄段的上网购物者人数成等差数列,求,的值;
(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望.
已知等比数列单调递增,记数列的前项之和为,且满足条件,.
(1)求数列的通项公式;
(2)设,求数列的前项之和.
在△中,角,,的对边分别为,,,且满足条件,,则△的周长为 .
高三某班要安排6名同学值日(周日休息),每天安排一人,每人值日一天,要求甲必须安排在周一到周四的某一天,乙必须安排在周五或周六的某一天,则不同的值日生表有 种.