选修4-4:极坐标与参数方程
在直角坐标系中,曲线的参数方程为(为参数)
(1)求曲线的普通方程;
(2)在以为极点,正半轴为极轴的极坐标系中,直线方程为,已知直线与曲线相交于两点,求.
已知函数
(1)若,且在上单调递增,求实数的取值范围
(2)是否存在实数,使得函数在上的最小值为?若存在,求出实数的值;若不存在,请说明理由.
已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.
(1)求椭圆的标准方程;
(2)经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且,
其中为坐标原点,求直线的斜率.
已知四棱柱的底面是边长为的菱形,且,平面,,设为的中点
(1)求证:平面
(2)点在线段上,且平面,求平面和平面所成锐角的余弦值.
根据某电子商务平台的调查统计显示,参与调查的位上网购物者的年龄情况如右图.
(1)已知、、三个年龄段的上网购物者人数成等差数列,求的值;
(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放元的代金券,潜在消费人群每人发放元的代金券.已经采用分层抽样的方式从参与调查的位上网购物者中抽取了人,现在要在这人中随机抽取人进行回访,求此三人获得代金券总和的分布列与数学期望.
已知等比数列单调递增,记数列的前项之和为,且满足条件
(1)求数列的通项公式;
(2)设,求数列的前项之和.