设,.
(Ⅰ)当时,求曲线在处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
如图,在四棱锥中,底面为矩形,侧棱底面,,,,为的中点.
(Ⅰ)求直线与所成角的余弦值;
(Ⅱ)在侧面内找一点,使面,求N点的坐标。
已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为.
(1)求椭圆的方程;
(2)已知点是线段上异于的一个定点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由.
设,若时,恒有,则 .
在中,,,则的大值为 .
点在不等式组的平面区域内,则的最大值为 .