设是定义在R上的奇函数,且对任意a、b,当时,都有.
(1)若,试比较与的大小关系;
(2)若对任意恒成立,求实数k的取值范围.
某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在如下图象中的两条线段上.该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示:
(1)根据提供的图象,写出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?
函数
(1)当时,求函数的定义域;
(2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;若不存在,请说明理由.
已知函数f(x)=2x-.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
已知函数.
⑴判断函数的奇偶性,并证明;
⑵利用函数单调性的定义证明:是其定义域上的增函数.
已知全集,集合,
(1)求、;
(2)已知集合,且M∩A=M,求实数k的取值范围.