过点作一直线与抛物线交于,两点,点是抛物线上到直线的距离最小的点,直线与直线交于点.
(Ⅰ)求点的坐标;
(Ⅱ)求证:直线平行于抛物线的对称轴.
如图,在边长为2的正方形中,点,分别是,的中点,将分别沿,折起,使两点重合于.
(Ⅰ)求证:平面;
(Ⅱ)求四棱锥的体积.
设数列各项为正数,且,.
(Ⅰ)证明:数列为等比数列;
(Ⅱ)设数列的前项和为,求使成立时的最小值.
在中,角所对的边分别为,且满足.
(Ⅰ)判断的形状;
(Ⅱ)求的取值范围.
一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率
如图,为椭圆的长轴的左、右端点,为坐标原点,为椭圆上不同于的三点,直线,围成一个平行四边形,则 .