满分5 > 高中数学试题 >

已知函数. (1)求曲线在点处的切线方程和函数的极值: (2)若对任意,都有成立...

已知函数

(1)求曲线在点处的切线方程和函数的极值:

(2)若对任意,都有成立,求实数的最小值.

 

(1)切线方程为,函数在时,取得极小值(2)1 【解析】 试题分析:(1)根据导数几何意义得曲线在处的切线斜率等于,再根据,利用点斜式可得切线方程为,求函数极值,首先求导函数零点:,列表分析导函数符号变化规律,确定函数极值(2)不等式恒成立问题一般转化为对应函数最值问题:,再根据函数定义域讨论函数最值取法: 若,; 若, 试题解析:(1)因为,所以, 因为,所以曲线在处的切线方程为..........3分 由解得,则及的变化情况如下: 2 0 递减 极小值 递增 所以函数在时,取得极小值....................6分 (2)由题设知:当时,,当时,, 若,令,则, 由于,显然不符合题设要求...9分 若,对, 由于, 显然,当,对,不等式恒成立, 综上可知,的最小值为1.........................................12分 考点:导数几何意义,利用导数求函数极值,利用导数求参数取值范围 【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.  
复制答案
考点分析:
相关试题推荐

已知椭圆,离心率为,两焦点分别为,过的直线交椭圆两点,且的周长为8.

(1)求椭圆的方程;

(2)过点作圆的切线交椭圆两点,求弦长的最大值.

 

查看答案

如图,在直三棱柱中,平面侧面,且

(1)求证:

(2)若直线与平面所成角的大小为,求锐二面角的大小.

 

查看答案

2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:

编号

1

2

3

4

5

169

178

166

175

180

75

80

77

70

81

(1)求乙厂生产的产品数量:

(2)当产品中的微量元素满足:,且时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.

 

查看答案

在公差不为零的等差数列中,已知,且成等比数列.

(1)求数列的通项公式;

(2)设数列的前项和为,记,求数列的前项和

 

查看答案

已知平面截一球面得圆,过圆的圆心的平面与平面所成二面角的大小为60°,平面截该球面得圆,若该球的表面积为,圆的面积为,则圆的半径为__________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.