已知椭圆:的右焦点为,且点在椭圆上.
⑴求椭圆的标准方程;
⑵已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和, , , 是棱的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求平面与平面所成的二面角的余弦值;
(Ⅲ)设点是直线上的动点, 与平面所成的角为,求的最大值.
当前,网购已成为现代大学生的时尚。某大学学生宿舍4人参加网购,约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用分别表示这4个人中去淘宝网和京东商城购物的人数,记,求随机变量的分布列与数学期望.
中,角,,所对边分别是,,,且.
(1)求的值;
(2)若,求面积的最大值.
四面体的四个顶点均在半径为2的球面上,若, , 两两垂直, ,则四面体体积的最大值为__________.
.