已知集合, ,则( )
A. B. C. D.
选修4-5:不等式选讲
设.
(1)若的解集为,求实数的值.
(2)当时,若存在,使得不等式成立,求实数的取值范围.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).
(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.
(2)设为曲线上任意一点,求的取值范围.
已知函数在上是增函数,且.
(1)求a的取值范围;
(2)求函数在上的最大值.
(3)已知,证明.
已知椭圆:的右焦点为,且点在椭圆上.
⑴求椭圆的标准方程;
⑵已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和, , , 是棱的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求平面与平面所成的二面角的余弦值;
(Ⅲ)设点是直线上的动点, 与平面所成的角为,求的最大值.