某中学开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ) 求的值并估计全校3000名学生中“读书迷”大概有多少?(将频率视为概率)
(Ⅱ)根据已知条件完成下面的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
| 非读书迷 | 读书迷 | 合计 |
男 |
| 15 |
|
女 |
|
| 45 |
合计 |
|
|
|
附: , .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
在中,角所对的边分别为,且满足.
(Ⅰ)求角的值;
(Ⅱ)若,且,求的取值范围.
已知数列中, , , , ,则__________.
为内一点,且, 和的面积分别是和,则的比值是__________.
已知指数函数(且)的图象过点,则在内任取一个实数,使得的概率为__________.
若实数满足不等式组,目标函数的最大值为__________.