已知命题,则( )
A. 命题为假命题 B. 命题为真命题
C. 命题为假命题 D. 命题为真命题
已知集合, ,则( )
A. B. C. D.
已知为虚数单位,则( )
A. B. C. D.
设函数,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.
(1)求 (2)证明:
已知椭圆E: 的离心率为,过左焦点作x轴的垂线交椭圆于A、B两点,且|AB|=1.
(1)求椭圆E的方程;
(2)设P、Q是椭圆E上两点,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐标原点.
当P、Q运动时,是否存在定圆O,使得直线PQ都与定圆O相切?若存在,请求出圆O的方程;若不存在,请说明理由.
如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=.
(Ⅰ)证明:D'H⊥平面ABCD. (Ⅱ)求二面角B-D'A-C的正弦值.