选修4-5:不等式选讲
已知函数.
(1)求函数的定义域;
(2)若当时,不等式恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求出圆的直角坐标方程;
(2)已知圆与轴相交于, 两点,直线: 关于点对称的直线为.若直线上存在点使得,求实数的最大值.
已知(为常数).
(1)求的极值;
(2)设,记,已知为函数是两个零点,求证: .
如图,已知抛物线与圆相交于两点,且点的横坐标为.过劣弧上动点作圆的切线交抛物线于两点,分别以为切点作抛物线的切线, 与相交于点.
(1)求抛物线的方程;
(2)求点到直线距离的最大值.
如图,平面五边形中, ∥,且, .将沿折起,使点到的位置,且,得到四棱锥.
(1)求证: 平面;
(2)记平面与平面相交于直线,求证:∥.
某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取名学生,其中男生名;在这名学生中选择社会科学类的男生、女生均为名.
(1)试问:从高一年级学生中随机抽取人,抽到男生的概率约为多少?
(2)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?
| 选择自然科学类 | 选择社会科学类 | 合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
附: ,其中.