选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),再以原点为极点,以正半轴为极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的值.
已知函数(为自然对数的底数).
(1)若, ,求函数的单调区间;
(2)若,且方程在内有解,求实数的取值范围.
如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,过作圆心为的圆,使抛物线上其余点均在圆外,且.
(1)求抛物线和圆的方程;
(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.
如图,已知正方体的棱长为, 分别是棱的中点.
(1)求证:平面平面;
(2)求点到平面的距离.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
已知函数的最小正周期为.
(1)求函数的单调增区间;
(2)将函数的图象向左平移个单位,再向下平移1个单位,得到函数的图象,求在区间上零点的个数.