选修4-5:不等式选讲
已知函数.
(1)若不等式的解集为,求实数的值;
(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.
选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),再以原点为极点,以正半轴为极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的值.
已知函数(为自然对数的底数).
(1)若, ,求函数的单调区间;
(2)若,且方程在内有解,求实数的取值范围.
如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,过作圆心为的圆,使抛物线上其余点均在圆外,且.
(1)求抛物线和圆的方程;
(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.
如图,四边形是直角梯形, , , , , , ,直线与直线所成的角为.
(1)求证:平面平面;
(2)求锐二面角的余弦值.
某校高三数学竞赛初赛考试后,对部分考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(1)请补充完整频率分布直方图,并估计这组数据的平均数M;
(2)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为.若,则称此二人为“黄金帮扶组”.试求选出的二人为“黄金帮扶组”的概率;
(3)以此样本的频率当做概率,现随机在这所有考生中选出3名学生,求成绩不低于120分的人数的分布列及期望.