已知三棱台中, , , ,平面平面,
(1)求证: 平面;
(2)点为上一点,二面角的大小为,求与平面所成角的正弦值.
为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.
温度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中, , , ,
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: , .
(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据: , , )
(3)若模型①、②的相关指数计算得分分别为, ,请根据相关指数判断哪个模型的拟合效果更好.
已知函数.
(1)若在上的值域为,求的取值范围;
(2)若在上单调,且,求的值.
已知平面向量, 满足,存在单位向量,使得,则的取值范围是__________.
以40 向北偏东航行的科学探测船上释放了一个探测气球,气球顺风向正东飘去,3后祈求上升到1处,从探测船上观察气球,仰角为,求气球的水平飘移速度是__________ .
已知实数, 满足,则的最小值为1,则__________.