已知函数.
(1)若在定义域上为单调递减函数,求实数的取值范围;
(2)是否存在实数,使得恒成立且有唯一零点,若存在,求出满足, 的的值;若不存在,请说明理由.
一张半径为4的圆形纸片的圆心为, 是圆内一个定点,且, 是圆上一个动点,把纸片折叠使得与重合,然后抹平纸片,折痕为,设与半径的交点为,当在圆上运动时,则点的轨迹为曲线,以所在直线为轴, 的中垂线为轴建立平面直角坐标系,如图.
(1)求曲线的方程;
(2)曲线与轴的交点为, (在左侧),与轴不重合的动直线过点且与交于、两点(其中在轴上方),设直线、交于点,求证:动点恒在定直线上,并求的方程.
已知三棱台中, , , ,平面平面,
(1)求证: 平面;
(2)点为上一点,二面角的大小为,求与平面所成角的正弦值.
为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.
温度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中, , , ,
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: , .
(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据: , , )
(3)若模型①、②的相关指数计算得分分别为, ,请根据相关指数判断哪个模型的拟合效果更好.
已知函数.
(1)若在上的值域为,求的取值范围;
(2)若在上单调,且,求的值.
已知平面向量, 满足,存在单位向量,使得,则的取值范围是__________.