已知集合,则 ( )
A. B. C. D.
已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于、两点,以为对角线作正方形,记直线与轴的交点为,问、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.
已知函数.
(Ⅰ)过原点作曲线的切线,求切线方程;
(Ⅱ)当时,讨论曲线与曲线公共点的个数.
如图,在中, 为直角, .沿的中位线,将平面折起,使得,得到四棱锥.
(Ⅰ)求证: 平面;
(Ⅱ)求三棱锥的体积;
(Ⅲ)是棱的中点,过做平面与平面平行,设平面截四棱锥所得截面面积为,试求的值.
“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 | P1 | P2 | P3 | P4 |
为了了解一批空气净化器(共2000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中.按照, , , , 均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图:
(Ⅰ)求的值及频率分布直方图中的值;
(Ⅱ)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P2的空气净化器有多少台?
(Ⅲ)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为P2的概率.
已知分别是的三个内角的三条对边,且.
(Ⅰ)求角的大小;
(Ⅱ)求的最大值.