已知集合, ,则 ( )
A. B. C. D.
选修4-5:不等式选讲
已知函数的最小值为.
(1)求的值;
(2)若是正实数,且,求证: .
选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线与轴的一个交点的坐标为,经过点作斜率为1的直线, 交曲线于两点,求线段的长.
已知函数.
(1)当时,求函数的单调区间;
(2)若时,均有成立,求实数的取值范围.
设抛物线的顶点在坐标原点,焦点在轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.
(1)求抛物线的标准方程;
(2)设直线在轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
如图所示,已知长方体中, , 为的中点,将沿折起,使得.
(1)求证:平面平面;
(2)是否存在满足的点,使得二面角为大小为?若存在,求出相应的实数;若不存在,请说明理由.