选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为,(其中为参数),曲线,以原点为极点, 轴的正半轴为极轴建立极坐标系,射线与曲线分别交于点 (均异于原点)
(1)求曲线的极坐标方程;
(2)当时,求的取值范围.
已知函数在处的切线经过点
(1)讨论函数的单调性;
(2)若不等式恒成立,求实数的取值范围.
已知直线与椭圆相交于两点,与轴, 轴分别相交于点和点,且,点是点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.
(1) 若椭圆的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,求椭圆的方程;
(2)当时,若点平分线段,求椭圆的离心率.
如图,在几何体中,四边形是菱形, 平面, ,且.
(1)证明:平面平面.
(2)若,求几何体的体积.
某知名品牌汽车深受消费者喜爱,但价格昂贵。某汽车经销商推出三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图。已知从三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元,2万元,3万元。以这100 位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率。
(Ⅰ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润不大于2万元的概率;
(Ⅱ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润的平均值;
(Ⅲ)根据某税收规定,该汽车经销商每月(按30天计)上交税收的标准如下表:
若该经销商按上述分期付款方式每天平均销售此品牌汽车3辆,估计其月纯收入(纯收入=总利润-上交税款)的平均值.
已知分别是的内角所对的边, .
(1)证明: ;
(2)若,求.