已知函数,其中
(Ⅰ)若函数在处的切线与直线垂直,求的值;
(Ⅱ)讨论函数极值点的个数,并说明理由;
(Ⅲ)若, 恒成立,求的取值范围.
过椭圆: 上一点向轴作垂线,垂足为右焦点, 、分别为椭圆的左顶点和上顶点,且, .
(Ⅰ)求椭圆的方程;
(Ⅱ)若动直线与椭圆交于、两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.
如图四棱锥的底面为菱形,且, , .
(Ⅰ)求证:平面平面;
(Ⅱ)二面角的余弦值.
已知锐角的内角、、的对边分别为、、,且, , 的面积为,又,记.
(Ⅰ)求, , 的值;
(Ⅱ)求的值.
给出下列五个命题:①“若,则或”是假命题;②从正方体的面对角线中任取两条作为一对,其中所成角为的有48对;③“ ”是方程表示焦点在轴上的双曲线的充分不必要条件;④点是曲线(, )上的动点,且满足,则的取值范围是;⑤若随机变量服从正态分布,且,则.其中正确命题的序号是__________(请把正确命题的序号填在横线上).