满分5 > 高中数学试题 >

选修4-4:坐标系与参数方程 在平面直角坐标系中,曲线的参数方程为(, 为参数)...

选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

 

(1)(2) 【解析】试题分析:(1)将,代入,得再利用同角三角函数关系消去参数得.由题意可设圆的方程,将点代入可得,即得的方程为,(2)先将直角坐标方程化为极坐标方程: ,再将点, 代入解得,最后计算的值. 试题解析:【解析】 (Ⅰ)将及对应的参数,代入,得即 ∴曲线的方程为(为参数),或. 设圆的半径为,由题意,圆的方程,(或). 将点代入,得,即, 所以曲线的方程为或. (Ⅱ)因为点, 在曲线上, 所以, , 所以 .  
复制答案
考点分析:
相关试题推荐

已知函数,其中

(Ⅰ)若函数处的切线与直线垂直,求的值;

(Ⅱ)讨论函数极值点的个数,并说明理由;

(Ⅲ)若 恒成立,求的取值范围.

 

查看答案

过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

 

查看答案

上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.

 

查看答案

如图四棱锥的底面为菱形,且 .

(Ⅰ)求证:平面平面

(Ⅱ)二面角的余弦值.

 

查看答案

已知锐角的内角的对边分别为,且 的面积为,又,记.

(Ⅰ)求 的值;

(Ⅱ)求的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.