满分5 > 高中数学试题 >

(12分)已知函数=ae2x+(a﹣2)ex﹣x. (1)讨论的单调性; (2)...

12分)已知函数=ae2x+a﹣2ex﹣x.

1讨论的单调性;

2有两个零点,求a的取值范围.

 

(1)详见解析;(2) 【解析】(1)的定义域为,, (ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得. 当时,;当时,,所以在单调递减,在单调递增. (2)(ⅰ)若,由(1)知,至多有一个零点. (ⅱ)若,由(1)知,当时,取得最小值,最小值为. ①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时,,即. 又,故在有一个零点. 设正整数满足,则. 由于,因此在有一个零点. 综上,的取值范围为.    
复制答案
考点分析:
相关试题推荐

12分)已知椭圆Ca>b>0),四点P11,1),P20,1),P3–1 ),P41)中恰有三点在椭圆C.

1)求C的方程;

2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

 

查看答案

12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2)

1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X1)X的数学期望;

2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,i=1,2,,16

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2

 

查看答案

12分)如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB平面PAD

(2)PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

 

查看答案

12分)ABC的内角ABC的对边分别为abc,已知ABC的面积为   

1)求sinBsinC;

2)若6cosBcosC=1,a=3,ABC的周长

 

查看答案

如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,DBCECAFAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起DBCECAFAB,使得DEF重合,得到三棱锥。当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.