(12分)
设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足.
求点P的轨迹方程;
设点Q在直线x=-3上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F.
(12分)
如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD, E是PD的中点.
(1)证明:直线 平面PAB
(2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值
(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
| 箱产量<50kg | 箱产量≥50kg |
旧养殖法 |
|
|
新养殖法 |
|
|
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
(12分)
的内角的对边分别为 ,已知.
(1)求
(2)若 , 面积为2,求
已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 .
等差数列的前项和为,,,则 .