满分5 > 高中数学试题 >

[选修4—5:不等式选讲](10分) 已知函数=│x+1│–│x–2│. (1)...

[选修4—5:不等式选讲](10分)

已知函数=│x+1│–│x–2│.

(1)求不等式≥1的解集;

(2)若不等式≥x2–x +m的解集非空,求m的取值范围.

 

(1);(2) 【解析】(1)①当时,无解; ②当时,,由,可得,∴ ③当时,,,. 综上所述的解集为 . (2)原式等价于存在,使, 成立,即 , 设, 由(1)知 , 当时,, 其开口向下,对称轴, ∴, 当时 , 其开口向下,对称轴为, ∴, 当时,, 其开口向下,对称轴为, ∴, 综上 , ∴的取值范围为 .    
复制答案
考点分析:
相关试题推荐

[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)=0,M为l3与C的交点,求M的极径. 学*科@

 

查看答案

(12分)

已知函数=lnx+ax2+(2a+1)x.

(1)讨论的单调性;

(2)当a﹤0时,证明

 

查看答案

(12分)

在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现ACBC的情况?说明理由;

(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.

 

查看答案

(12分

如图,四面体ABCD中,ABC是正三角形,AD=CD.

(1)证明:ACBD;

(2)已知ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

 

查看答案

(12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.学#@

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.