满分5 > 高中数学试题 >

如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器...

如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

 

 

(1)记玻璃棒与交点为H,则,,没入水中的部分为(cm). (2),, 记玻璃棒与交点为Q,则 ,∴,∴,, ∴, 没入水中的部分为(cm) 【解析】 解:(1)由正棱柱的定义,平面,所以平面平面,. 记玻璃棒的另一端落在上点处. 因为, 所以,从而 , 记与水面的焦点为,过作P1Q1⊥AC, Q1为垂足, 则 P1Q1⊥平面 ABCD,故P1Q1=12, 从而 AP1= . 答:玻璃棒l没入水中部分的长度为16cm. ( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm) (2)如图,O,O1是正棱台的两底面中心. 由正棱台的定义,OO1⊥平面 EFGH, 所以平面E1EGG1⊥平面EFGH,O1O⊥EG. 同理,平面 E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1. 记玻璃棒的另一端落在GG1上点N处. 过G作GK⊥E1G,K为垂足, 则GK =OO1=32. 因为EG = 14,E1G1= 62, 所以KG1= ,从而. 设则. 因为,所以. 在中,由正弦定理可得,解得. 因为,所以. 于是. 记EN与水面的交点为P2,过 P2作P2Q2⊥EG,Q2为垂足,则 P2Q2⊥平面 EFGH,故P2Q2=12,从而 EP2=. 答:玻璃棒l没入水中部分的长度为20cm. (如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)  
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.

(1)求椭圆E的标准方程;

(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.

 

 

查看答案

已知向量a=(cosx,sinx),,.

(1)若ab,求x的值;

(2)记,求的最大值和最小值以及对应的x的值

 

查看答案

如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.

求证:(1)EF平面ABC;

(2)ADAC.

 

 

查看答案

设f(x)是定义在R 且周期为1的函数,在区间上,其中集合D=,则方程f(x)-lgx=0的解的个数是           .

 

查看答案

在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是        

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.