【选修4-1:几何证明选讲】(本小题满分10分)
如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足。
求证:(1)∠PAC=∠CAB;
(2)AC2 =AP·AB。
已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)
求b关于a的函数关系式,并写出定义域;
证明:b²>3a;
若, 这两个函数的所有极值之和不小于,求a的取值范围。
对于给定的正整数k,若数列lanl 满足
=2kan对任意正整数n(n> k) 总成立,则称数列lanl 是“P(k)数列”.学科@网
(1)证明:等差数列lanl是“P(3)数列”;
若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.
如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
已知向量a=(cosx,sinx),,.
(1)若a∥b,求x的值;
(2)记,求的最大值和最小值以及对应的x的值