【2017福建三明5月质检】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)已知直线与曲线交于两点,点,求的值.
【2017四川泸州四诊】在直角坐标系中,圆的参数方程(为参数).以为极点, 轴的非负半轴为极轴建立坐标系.
(1)求圆的极坐标方程;
(2)设直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
【2017黑龙江哈师大附中三模】已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线, (为参数).
(Ⅰ)求曲线上的点到电线距离的最小值;
(Ⅱ)若把上各点的横坐标都扩大原来为原来的2倍,纵坐标扩大原来的倍,得到曲线.设,曲线与交于, 两点,求.
【2017广西5月考前联考】在平面直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,曲线的极坐标方程为.
(1)求曲线的参数方程为曲线的直角坐标方程;
(2)记曲线与曲线交于, 两点,求.
【2017福建三明5月质检】如图,在四棱锥中,侧面底面,底面是平行四边形, , , , 为的中点,点在线段上.
(Ⅰ)求证: ;
(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.
【2017四川泸州四诊】如图,平面平面,四边形是菱形, .
(1)求证: ;
(2)若,且直线与平面所成角为,求二面角的平面角的余弦值.