在四棱锥P-ABCD中,底面ABCD是边长为的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求证:PB=PD;
(2)若点M,N分别是棱PA,PC的中点,平面DMN与棱PB的交点Q,则在线段BC上是否存在一点H,使得DQ⊥PH,若存在,求BH的长,若不存在,请说明理由.
已知分别为椭圆的左、右焦点.
(1)当时,若是椭圆上一点,且位于第一象限,,求点的坐标;
(2)当椭圆的焦距为2时,若直线与椭圆相交于两点,且,试求的面积.
如图, 四点共圆,为钝角且,,,
(1)求;
(2)设,,求的值.
设数列的前项和为满足:,则____
已知抛物线:的焦点为,准线与轴的交点为,是抛物线上的点,且轴.若以为直径的圆截直线所得的弦长为,则实数的值___.
现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是___