函数 (,且)恒过定点( )
A. B. C. D.
设全集,集合,,则( )
A. B. C. D.
( )
A. B. C. D.
设Tn为数列{an}的前n项的积,即Tn=a1•a2…•an.
(1)若Tn=n2,求数列{an}的通项公式;
(2)若数列{an}满足Tn=(1﹣an)(n∈N*),证明数列为等差数列,并求{an}的通项公式;
(3)数列{an}共有100项,且满足以下条件:
①;
②(1≤k≤99,k∈N*).
(Ⅰ)求的值;
(Ⅱ)试问符合条件的数列共有多少个?为什么?
已知椭圆 (a>b>0)长轴的两顶点为A、B,左右焦点分别为F1、F2,焦距为2c且a=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3.
(1)求椭圆C的方程;
(2)在双曲线 上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,试证明:k1+k2+k3+k4为定值;
(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为,求的取值范围.
若函数y=f(x)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足f(x1)f(x2)=1,则称该函数为“依赖函数”.
(1)判断,y=2x是否为“依赖函数”;
(2)若函数y=a+sinx(a>1), 为依赖函数,求a的值,并给出证明.