在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(1)若
,求
与
的普通方程;
(2)若
与
有两个不同的公共点,求
的取值范围.
设三棱锥
的每个顶点都在球
的球面上,
是面积为
的等边三角形,
,
,且平面
平面
.

(1)求球
的表面积;
(2)证明:平面
平面
,且平面
平面
.
(3)与侧面
平行的平面
与棱
,
,
分别交于
,
,
,求四面体
的体积的最大值.
已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程.
(2)直线
经过
的焦点
且
不与
轴垂直,
与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,试问在
轴上是否存在点
,使
为定值?若存在,求该定值及
的坐标;若不存在,请说明理由.
已知函数
.
(1)求
的单调区间;
(2)若函数
在
上只有一个零点,求
的取值范围.
国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成
,
,
,
,
,
6组,并绘制出如下的频率分布直方图.

(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;
(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).
在公差为2的等差数列
中,
,
,
成等比数列.
(1)求
的通项公式;
(2)求数列
的前
项和
.
