(1),(2)
【解析】
试题(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.
(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.
试题解析:
(1)设二次函数一般式(),代入条件化简,根据恒等条件得,,解得,,再根据,求.(2)①根据二次函数对称轴必在定义区间外得实数的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法.
试题解析:
(1)设二次函数(),
则
∴,,∴,
又,∴.
∴
(2)①∵
∴.
又在上是单调函数,∴对称轴在区间的左侧或右侧,∴或
②,,对称轴,
当时,;
当时,;
当时,
综上所述,