已知向量
,
,
.若
,则实数
的值为( )
A.
B.
C.
D.![]()
已知复数z满足
,则
( )
A.
B.2 C.
D.1
若全集
,集合
,
,则
( )
A.
B.
C.
D.![]()
定义向量
的“相伴函数”为
,函数
的“相伴向量”为
,其中O为坐标原点,记平面内所有向量的“相伴函数”构成的集合为S.
(1)设
,求证:
;
(2)已知
且
,求其“相伴向量”的模;
(3)已知![]()
为圆
上一点,向量
的“相伴函数”
在
处取得最大值,当点M在圆C上运动时,求
的取值范围.
设数列
的前n项和为
,对一切
,点
都在函数
的图像上.
(1)证明:当
时,
;
(2)求数列
的通项公式;
(3)设
为数列
的前n项的积,若不等式
对一切
成立,求实数a的取值范围.
我们要计算由抛物线
,x轴以及直线
所围成的区域的面积S,可用x轴上的分点
、
、
、…、
、1将区间
分成n个小区间,在每个小区间上做一个小矩形,使矩形的左端点在抛物线
上,这些矩形的高分别为
、
、
、…、
,矩形的底边长都是
,设所有这些矩形面积的总和为
,为求S,只须令分割的份数n无限增大,
就无限趋近于S,即
.
(1)求数列
的通项公式,并求出S;
(2)利用相同的思想方法,探求由函数![]()
的图象,x轴以及直线
和
所围成的区域的面积T.
