是虚数单位,则( )
A. B. C. D.
集合,,则( )
A. B.
C. D.
已知函数(是非零实常数)满足,且关于的方程的解集中恰有一个元素.
(1)求的值;
(2)在直角坐标系中,求定点到函数图像上任意一点的距离的最小值;
(3)当时,不等式恒成立,求实数的取值范围.
已知函数(常数)
(1)当时,解关于的不等式:
(2)讨论函数的奇偶性,并说明理由;
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知函数.
(1)写出一个奇函数和一个偶函数,使=+;
(2) 若对于任意的 恒成立,求实数的取值范围.