设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=( )
A. {x|-1<x<3} B. {x|-1<x<1} C. {x|1<x<2} D. {x|2<x<3}
已知圆C过点A(2,6),且与直线l1: x+y-10=0相切于点B(6,4).
(1)求圆C的方程;
(2)过点P(6,24)的直线l2与圆C交于M,N两点,若△CMN为直角三角形,求直线l2的斜率;
(3)在直线l3: y=x-2上是否存在一点Q,过点Q向圆C引两切线,切点为E,F, 使△QEF为正三角形,若存在,求出点Q的坐标,若不存在,说明理由.
如图, 正三棱柱ABC-A1B1C1中,E是AC的中点.
(1)求证: 平面BEC1⊥平面ACC1A1;
(2)若AA1=, AB=2, 求三棱锥A-BEC1的体积.
寒假即将到来,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每在支出20元的各种费用(人工费,消耗费用等等).受市场调控,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍)
(1)设宾馆一天的利润为W元, 求W与x的函数关系式;
(2)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
如图所示的多面体中, AC⊥BC,四边形ABED是正方形,平面ABED⊥平面ABC,点F,G,H分别为BD,EC,BE的中点,求证:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
已知函数 (a>0,a≠1)是指数函数.
(1)求a的值,判断的奇偶性,并加以证明;
(2)解不等式 .