已知
(1)证明: ;
(2)设为正数,求证: .
在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极轴,轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)若点坐标为,圆与直线交于两点,求的值.
已知函数在点处的切线方程为
(1)求的值;
(2)若对函数定义域内的任一个实数,都有恒成立,求实数的取值范围.
已知动圆在圆:外部且与圆相切,同时还在圆:内部与圆相切.
(1)求动圆圆心的轨迹方程;
(2)记(1)中求出的轨迹为,与轴的两个交点分别为、,是上异于、的动点,又直线与轴交于点,直线、分别交直线于、两点,求证:为定值.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱锥P-EAD的体积.
已知函数,
(1)当时,求函数的最小值和最大值;
(2)设的内角的对应边分别为,且,,若向量与向量共线,求的值.