如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=
,AB=2,AC=2
,PA=2.求:
(1)三棱锥P-ABC的体积;
(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).

定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量列的公差.已知向量列
是以
为首项,公差
的等差向量列.若向量
与非零向量
)垂直,则
( )
A.
B.
C.
D.![]()
对于函数
,有下列五个命题:
①若
存在反函数,且与反函数图象有公共点,则公共点一定在直线
上;
②若
在
上有定义,则
一定是偶函数;
③若
是偶函数,且
有解,则解的个数一定是偶数;
④若
是函数
的周期,则
,也是函数
的周期;
⑤
是函数
为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A.
B.
C.
D.![]()
已知函数y=f(x),x∈R,数列{an}的通项公式是an=f(n),n∈N*,那么“函数y=f(x)在[1,+∞)上递增”是“数列{an}是递增数列”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
关于三个不同平面
与直线
,下列命题中的假命题是( )
A. 若
,则
内一定存在直线平行于![]()
B. 若
与
不垂直,则
内一定不存在直线垂直于![]()
C. 若
,
,
,则![]()
D. 若
,则
内所有直线垂直于![]()
已知全集为
,
,定义集合
的特征函数为
,对于
,
,给出下列四个结论:
(1)对任意
,有![]()
(2)对任意
,若
,则![]()
(3)对任意
,有![]()
(4)对任意
,有![]()
其中,正确的序号是_____
