如图,在某商业区周边有 两条公路和,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与,分别交于,要求与扇形弧相切,切点不在,上.
(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;
(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.
已知向量,函数.
(1)求函数的最小正周期及单调递增区间;
(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.
如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:
(1)三棱锥P-ABC的体积;
(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).
定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量列的公差.已知向量列是以为首项,公差的等差向量列.若向量与非零向量)垂直,则( )
A. B. C. D.
对于函数,有下列五个命题:
①若存在反函数,且与反函数图象有公共点,则公共点一定在直线上;
②若在上有定义,则一定是偶函数;
③若是偶函数,且有解,则解的个数一定是偶数;
④若是函数的周期,则,也是函数的周期;
⑤是函数为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A. B. C. D.
已知函数y=f(x),x∈R,数列{an}的通项公式是an=f(n),n∈N*,那么“函数y=f(x)在[1,+∞)上递增”是“数列{an}是递增数列”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件