某游戏棋盘上标有第、、、、站,棋子开始位于第站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋子所走站数之和的分布列与数学期望;
(2)证明:;
(3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.
已知F为抛物线C:y2=2px(P>0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4.
(1)求抛物线C的方程.
(2)过点(m,0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.
如图,矩形中,,,为的中点,现将与折起,使得平面及平面都与平面垂直.
(1)求证:平面;
(2)求二面角的余弦值.
已知、、是的内角,、、分别是其对边长,向量,,且.
(1)求角的大小;
(2)若,求面积的最大值.
已知双曲线:的左右焦点分别为,,过的直线与圆相切于点,且直线与双曲线的右支交于点,若,则双曲线的离心率为______.
已知的展开式的所有项的系数和为64,则其展开式中的常数项为_______.