设集合,,则( )
A. B. C. D.
已知函数,且,其中为奇函数,为偶函数.
(1)求的解析式:
(2)若不等式对任意恒成立,求实数的取值范围.
将个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;
(3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
在的二项展开式中,所有项的二项式系数之和为.
(1)求展开式的常数项:
(2)求展开式中所有奇数项的系数和.
己知,且在上恒为非负数,求实数的取值范围.