如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图所示,在四棱锥中,平面平面,,是等边三角形,已知,.
(1)设是上的一点,求证:平面平面;
(2)求四棱锥的体积.
已知圆C:,直线:
(1)求证:直线过定点;
(2)判断该定点与圆的位置关系;
(3)当m为何值时,直线被圆C截得的弦最长.
如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
已知点,,点在直线上,求取得最小值时点的坐标.
曲线,与直线有两个公共点时,则实数的取值范围是 _________________.