满分5 > 高中数学试题 >

如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上. (1)若圆心也...

如图,在平面直角坐标系中,点,直线,设圆的半径为1 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

 

(1)或;(2). 【解析】 (1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可. (1)由得圆心, ∵圆的半径为1, ∴圆的方程为:, 显然切线的斜率一定存在,设所求圆的切线方程为,即. ∴, ∴,∴或. ∴所求圆的切线方程为或. (2)∵圆的圆心在直线:上,所以,设圆心为, 则圆的方程为. 又∵, ∴设为,则,整理得,设为圆. 所以点应该既在圆上又在圆上,即圆和圆有交点, ∴, 由,得, 由,得. 综上所述,的取值范围为.
复制答案
考点分析:
相关试题推荐

如图所示,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,求证:平面平面

(2)求四棱锥的体积.

 

查看答案

已知圆C:,直线:

1)求证:直线过定点;

2)判断该定点与圆的位置关系;

3)当m为何值时,直线被圆C截得的弦最长.

 

查看答案

如图,在三棱锥A­BCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

 

查看答案

已知点,点在直线上,求取得最小值时点的坐标.

 

查看答案

曲线与直线有两个公共点时,则实数的取值范围是 _________________.    

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.